GSM (Global System for Mobile communications: originally from Groupe Spécial Mobile) is the most popular standard for mobile phones in the world. Its promoter, the GSM Association, estimates that 80% of the global mobile market uses the standard.[1] GSM is used by over 3 billion people across more than 212 countries and territories.[2][3] Its ubiquity makes international roaming very common between mobile phone operators, enabling subscribers to use their phones in many parts of the world. GSM differs from its predecessors in that both signaling and speech channels are digital, and thus is considered a second generation (2G) mobile phone system. This has also meant that data communication was easy to build into the system. GSM EDGE is a 3G version of the protocol.
The ubiquity of the GSM standard has been an advantage to both consumers (who benefit from the ability to roam and switch carriers without switching phones) and also to network operators (who can choose equipment from any of the many vendors implementing GSM[4]). GSM also pioneered a low-cost (to the network carrier) alternative to voice calls, the short message service (SMS, also called "text messaging"), which is now supported on other mobile standards as well. Another advantage is that the standard includes one worldwide emergency telephone number, 112.[5] This makes it easier for international travellers to connect to emergency services without knowing the local emergency number.
Newer versions of the standard were backward-compatible with the original GSM phones. For example, Release '97 of the standard added packet data capabilities, by means of General Packet Radio Service (GPRS). Release '99 introduced higher speed data transmission using Enhanced Data Rates for GSM Evolution (EDGE).
In 1982, the European Conference of Postal and Telecommunications Administrations (CEPT) created the Groupe Spécial Mobile (GSM) to develop a standard for a mobile telephone system that could be used across Europe.[6] In 1987, a memorandum of understanding was signed by 13 countries to develop a common cellular telephone system across Europe.[7][8] Finally the system created by SINTEF lead by Torleiv Maseng was selected.[9]
In 1989, GSM responsibility was transferred to the European Telecommunications Standards Institute (ETSI) and phase I of the GSM specifications were published in 1990. The first GSM network was launched in 1991 by Radiolinja in Finland with joint technical infrastructure maintenance from Ericsson.[10] By the end of 1993, over a million subscribers were using GSM phone networks being operated by 70 carriers across 48 countries.[11
GSM is a cellular network, which means that mobile phones connect to it by searching for cells in the immediate vicinity.
There are five different cell sizes in a GSM network—macro, micro, pico, femto and umbrella cells. The coverage area of each cell varies according to the implementation environment. Macro cells can be regarded as cells where the base station antenna is installed on a mast or a building above average roof top level. Micro cells are cells whose antenna height is under average roof top level; they are typically used in urban areas. Picocells are small cells whose coverage diameter is a few dozen metres; they are mainly used indoors. Femtocells are cells designed for use in residential or small business environments and connect to the service provider’s network via a broadband internet connection. Umbrella cells are used to cover shadowed regions of smaller cells and fill in gaps in coverage between those cells.
Cell horizontal radius varies depending on antenna height, antenna gain and propagation conditions from a couple of hundred meters to several tens of kilometres. The longest distance the GSM specification supports in practical use is 35 kilometres (22 mi). There are also several implementations of the concept of an extended cell[12], where the cell radius could be double or even more, depending on the antenna system, the type of terrain and the timing advance.
Indoor coverage is also supported by GSM and may be achieved by using an indoor picocell base station, or an indoor repeater with distributed indoor antennas fed through power splitters, to deliver the radio signals from an antenna outdoors to the separate indoor distributed antenna system. These are typically deployed when a lot of call capacity is needed indoors; for example, in shopping centers or airports. However, this is not a prerequisite, since indoor coverage is also provided by in-building penetration of the radio signals from any nearby cell.
The modulation used in GSM is Gaussian minimum-shift keying (GMSK), a kind of continuous-phase frequency shift keying. In GMSK, the signal to be modulated onto the carrier is first smoothed with a Gaussian low-pass filter prior to being fed to a frequency modulator, which greatly reduces the interference to neighboring channels (adjacent channel interference).
GSM FREQUENCIES:
GSM networks operate in a number of different frequency ranges (separated into GSM frequency ranges for 2G and UMTS frequency bands for 3G). Most 2G GSM networks operate in the 900 MHz or 1800 MHz bands. Some countries in the Americas (including Canada and the United States) use the 850 MHz and 1900 MHz bands because the 900 and 1800 MHz frequency bands were already allocated. Most 3G GSM networks in Europe operate in the 2100 MHz frequency band.
The rarer 400 and 450 MHz frequency bands are assigned in some countries where these frequencies were previously used for first-generation systems.
GSM-900 uses 890–915 MHz to send information from the mobile station to the base station (uplink) and 935–960 MHz for the other direction (downlink), providing 125 RF channels (channel numbers 0 to 124) spaced at 200 kHz. Duplex spacing of 45 MHz is used.
In some countries the GSM-900 band has been extended to cover a larger frequency range. This 'extended GSM', E-GSM, uses 880–915 MHz (uplink) and 925–960 MHz (downlink), adding 50 channels (channel numbers 975 to 1023 and 0) to the original GSM-900 band. Time division multiplexing is used to allow eight full-rate or sixteen half-rate speech channels per radio frequency channel. There are eight radio timeslots (giving eight burst periods) grouped into what is called a TDMA frame. Half rate channels use alternate frames in the same timeslot. The channel data rate for all 8 channels is 270.833 kbit/s, and the frame duration is 4.615 ms.
The transmission power in the handset is limited to a maximum of 2 watts in GSM850/900 and 1 watt in GSM1800/1900.
GSM
RAJESHS, Monday, October 12, 2009
Subscribe to:
Post Comments (Atom)
Comments :
Post a Comment